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Abstract. Line intensities Am (|m| ≤ 4) of the HF fundamental band (T = 293 K) are found to decrease
linearly with the buffer-gas (Xe) density (dXe = 2.6–16 Amagat). The obtained slopes ∆1(m) of the Am(d)/
Am(0) vs. dXe plots are maximum at |m| = 1 (∆1(1) ≈ ∆1(−1) = 1.7(4) × 10−2 Amagat−1) and rapidly
drop with |m|. Many possible mechanisms are considered; the most effective one appears to be the HF–Xe
bimer formation, with the equilibrium constant strongly depending on the rotational quantum number.
The rigid-rotator approximation used gives the density derivatives considerably smaller than the measured
ones. The disbalance may be lessened for vibrating rotators by allowance for the interband intensity transfer
induced by the vibrational modulation of short-range forces.

PACS. 33.20.Ea Infrared spectra – 33.70.-w Intensities and shapes of molecular spectral lines and bands
– 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.)

1 Introduction

Despite the first evidences on the ability of buffer gases
to selectively modify the line intensities within a vibra-
tional band appeared in the sixties [1], the effect remains
still poorly explored from both experimental and theoret-
ical standpoints. To the best of our knowledge, the only
extensive study performed so far is due to Piollet-Mariel,
Boulet and Levy [2] who found the linear decrease of the
integrated line intensities AIF in the HCl overtone band
on the buffer-gas (Ar, Xe) number density db:

AIF(db)/AIF(0) ≈ 1 + db∆∆v(m). (1)

The density coefficients ∆2(m) (m = ±1,±2... is the line
number) were all found to be negative, the strongest de-
crease (∆2(1) ≈ −0.02/Amagat) being observed for the
R2(0)-transition (vi = 0, Ji = 0) = I → F = (vf = 2, Jf =
1). The measured ∆2(m) rapidly disappear at higher ro-
tational states. A similar J-dependence was found for the
symmetric P2(J + 1)-lines.

The interpretation advanced in [2] was based on the
static approach [3,4]:

AIF = 〈I ′|ρ|I ′〉〈I ′|M|F ′〉2 (2)

that implies the lifetime τc of intermolecular interactions
to be infinitely long. The primed states corresponding to
I and F collect all static perturbations; the upper bar de-
notes averaging over the interaction configurations. In so
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doing, the perturbation of the density matrix ρ was ne-
glected, and only variations of the dipole moment matrix
element 〈I ′|M|F ′〉 were accounted for.

In our opinion, there are serious objections to this
interpretation. First, the static theory cannot produce
Lorentzian shapes, in apparent conflict with a wealth of
observations including those of reference [2]. The non-
Lorentzian static shapes may appear only at large de-
tuning ∆ωFI from the line centers when ∆ωFIτc � 1.
Based on the known HCl–Ar potential [5], τ−1

c is esti-
mated to be ∼ 20 cm−1 at room temperature. On the
other hand, ∆ωFI cannot exceed the half interval between
the nearest lines equal to the rotational constant B. Thus,
∆ωFIτc ≤ Bτc ≈ 0.5 showing the static picture to be im-
proper.

Second, the demonstration of the linear density depen-
dence in the static approach meets serious problems since
the pairwise effect takes place only in the first perturba-
tion order. The theory [2] is based rather on a postulate
than on the hierarchy of physical times. On the contrary,
the pairwise additivity in the dynamic approach is due
to the inequality τc � τ0 (τ0 is the mean time between
successive collisions) which holds at the densities studied.

Third, the band integrated intensity Aband =
∑
mAIF

can be strictly shown to be db-independent for any
rototranslational dynamics [6] provided:

(a) the collision-induced polarization is negligible,
(b) the local-field effects are disregarded,
(c) the vibration remains unperturbed by collisions,
(d) the bound-states contributions are negligible.
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The assumptions (b–d) were used in [2]; in addi-
tion, the incremental collision-induced absorption (a) was
shown to be quite weak [2]. The appearing artifact total
band-intensity dependence on density is because of the
wave-function perturbations, by assumption, did not in-
fluence the matrix elements of ρ. With the provisos (a–d),
a more consistent treatment incorporating all effects of
perturbation should result in a sign-changing dependence
∆0(m) not confirmed experimentally [2].

These contradictions led us to reexamine the problem
from the more realistic dynamic (impact) standpoint. The
results are presented in Section 3, where two points are
emphasized. First, the rotational population redistribu-
tion is important, being mainly due to the bimer for-
mation. Notice that the interaction potentials are sub-
stantially anisotropic (to mix the rotational states) and
their well depths are close to kT ( to populate the bound
states). Second, the H–X stretching modes are character-
ized by large amplitudes comparable with the repulsion
core length. At least in this range, vibration appreciably
modulates the interaction and, as the result, the density
matrix acquires off-diagonal vibrational elements. In the
binary-collision regime, this leads to intensity mixing of
different vibrational bands linear in db. In its turn, a con-
siderable part of this vibrational intensity transfer may be
attributed to bimers and thus should be J-dependent.

In the HF–Xe case, the bimer band was traced in our
recent IR studies [7]. It is formed near the vibrational
frequency and is well resolved from the neighbouring P -
and R-lines at moderate pressures. Presently, we report
the density behaviour of these lines associated with the
unbound HF molecules. As compared to the HCl case,
the line spacings are almost doubled amounting to about
40 cm−1 (BHF = 20.56 cm−1) that favours the intensity
measurements.

2 Experimental results

The absorption spectra of the gaseous HF/Xe mixtures
were recorded in the spectral range 3500–4200 cm−1 at
relatively low Xe densities varied from 2.6 up to 16 Ama-
gat. In this density range, the line overlap remains negli-
gible, and accurate line-intensity measurements are possi-
ble. To measure AIF with sufficient accuracy, the profiles
were recorded at frequency detunings of five halfwidths
to each side from the line center. The resulting uncer-
tainty of the integrated line intensity did not exceed 0.5%.
Since the broadening coefficients are typically of the order
0.1 cm−1/Amagat, one can infer that the routine remains
quite reliable for HF at the above densities, with the rel-
ative intensity variations reaching 10% or more.

The measurements were performed at T = 293 K us-
ing a stainless steel optical cell of the 10 cm pathlength
with the leicosaphire windows. The density was calculated
from the reference thermodynamic data [8]. The resolu-
tion of the Bruker 113v Fourier spectrometer used was
0.1 cm−1 to obtain the low-density spectra (db = 2.6–
6 Amagat) and 0.2 cm−1 to record the line shapes at
db = 6–16 Amagat.

Fig. 1. Absorption spectra of HF–Xe mixtures (T = 293 K)
at different Xe densities; the upper curves are vertically shifted
by 0.05 and 0.10.

Fig. 2. Density dependence of HF line intensities on Xe density
(T = 293 K): (a) R1(0) transition; (b) R1(1) transition.

The spectrum evolution on the Xe density is por-
trayed in Figure 1. At low density (db = 2.6 Amagat), the
HF lines are characterized by the J-dependent halfwidths
(0.2–0.7 cm−1). As the Xe density grows, the lines are lin-
early broadened, and a new asymmetric band is steadily
formed near the P (1)-line (Fig. 1). Based on its position
and characteristic shape with the high-frequency shoul-
der, this band was assigned [7] to the HF stretching mode
of the HF–Xe bimer. As noted in the high-density exper-
iments [7], the lines with |m| = 1, 2, 3 became less in-
tense with the growing Xe density, similarly to what was
observed in the HCl–Ar/Xe spectra [2]. All spectra mea-
sured at different densities were normalized for the con-
stant HF density assuming the total integrated intensity
of the R(3)–R(7) lines to be not subjected to db. Typi-
cal Am vs. db plots are drawn in Figure 2. Table 1 lists
values of the ∆1(m) coefficients derived by the linear re-
gression fits. Systematic deviations that could be assigned
to the terms quadratic in db were not detected in the
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Table 1. Negative density coefficients ∆1(m) (in 10−2/Amagat) for vibrotational line intensities of HF–Xe mixture.

Measurement Calculation for R0(J)/P0(J + 1) lines

J R1(J) P1(J + 1) Bimer term Bimer term Quantum correction

T = 293 K T = 293 K T = 293 K T = 200 K T = 293 K

0 1.9(4) 1.5(4) 0.225 0.473 0.47×10−2

1 0.53(7) 0.8(1) 0.097 0.231 0.24×10−2

2 0.22(7) 0.6(2) 0.023 0.066 −0.11×10−2

3 0 0.3(3) 0.001 0.003 −0.88×10−2

4 0 0 0 0 −1.52×10−2

pressure range studied. A pair of central lines (|m| =
1) was found to have the largest ∆1-values (∆1(1) ≈
∆1(−1) ≈ −1.7(4)×10−2 Amagat−1). One may state that
within the measuremental errors the P1(J+1)- and R1(J)-
lines (J = 0, 1) have the same ∆1-coefficients; the P1(3)-
line decrease is faster than that of the R1(2)-line (Tab. 1).
Such asymmetry in the HCl spectra [2] is seemingly
absent. The effect might be attributed to the vibration-
rotation interaction which is stronger in the HF case; how-
ever, a detailed consideration of V R−T coupling remains
beyond the scope of this study.

3 Analysis of possible contributions

To reveal the possible mechanisms of the density effect,
we write the band spectral function Φvv′(ω) as

Φvv′(ω) =
∑
kk′

∫ ∞
−∞
〈vk|ρM(0)|k′v′〉

× 〈v′k′|M(t)|kv〉 exp(−iωt)dt (3)

where k symbolizes the set of quantum numbers charac-
terizing the rototranslational motion. The active molecule
remains most of the time unperturbed; the second fac-
tor in the integrand (Eq. (3)) is then oscillating with the
frequency ωFI belonging to the specified v → v′ band.
Due to correlations imposed by the intermolecular interac-
tions, the integrated band intensity becomes proportional
to 〈v|ρM |v′〉〈v′|M |v〉 but not to 〈v|ρ|v〉〈v|M |v′〉2 as equa-
tion (2) implies. The difference between both expressions
is due to the off-diagonal vibrational elements of ρ which
are obviously density dependent since they disappear in
a collisionless gas. Note also that the diagonal vibrational
matrix elements of M are usually much larger than the off-
diagonal ones. Hence, the effect of the off-diagonal 〈v|ρ|v′〉
elements on the pure rotational band (i.e. at v = v′ = 0)
is reduced. On the contrary, the nondiagonality of ρ may
add much to the vibrational transition intensities since the
intensity can be transfered from more intense bands with
smaller values of ∆v. Here, the calculations of the density
effects are performed assuming 〈v|ρ|v′〉 = δvv′〈v|ρ|v〉 to
hold; such treatment is, strictly speaking, appropriate to
the pure rotational band. In such case, the vibrational de-
pendence of the intermolecular potential affects slightly, if
any, the result. Arguments will be given for the possible

vibrational interband intensity transfer. Apart from diffi-
culties encountered in its calculation, the data are lacking
on the off-diagonal vibrational elements of the potential
which produce a nonvanishing value of 〈v|ρ|v′〉.

3.1 Reduced density matrix

We shall exploit the dynamical approach [9] based on
the Fano theory [10]. The approach uses the symmetric
Liouville-space metric [9], implying that the symmetrized
band shape function U(ω) is first calculated and, with its
help, the observable asymmetric band profile Φ(ω) is then
obtained. Provided the vibrational effects on the band
shapes are negligible, such scheme exactly accounts for
the detailed-balance. The integrated line intensities ÃIF

in the U(ω)-spectrum are [9]

ÃIF = 〈viJi|M|Jfvf〉2
[
〈Ji|ρ̃a|Ji〉+ 〈Jf |ρ̃a|Jf〉

]
/2. (4)

Instead of the conventially exploited free-molecule den-
sity matrix ρa [2,10], equation (4) contains the reduced
density matrix ρ̃a = TrBρ; the trace is to be taken
over the unbound bath (B) states. When M is assumed
to be the dipole moment of a free molecule, the pres-
sure effects are due to the difference between ρ̃a and ρa:
〈J |ρ̃a|J〉 = 〈J |ρa|J〉[1 + dbF (J)]. The correction to the
measured line intensity AIF (in the Φ-spectrum) is then
reduced to

∆0(m) =
1

1 + exp(−βh̄ωfi)
[
F (Ji) + exp(−βh̄ωfi)F (Jf)

]
.

(5)

Obviously, the intensity corrections for the P (J + 1) and
R(J) lines coincide and, therefore, the rotational detailed
balance equation: AIF(Ji, Jf) = AIF(Jf , Ji) exp(hωfi/kT )
holds.

Two independent mechanisms caused by binary inter-
molecular interactions can contribute to the density F -
coefficients. The first one is due to the quantum roto-
translational dynamics of colliding a–b pairs. The second
mechanism originates from the a–b bimer formation that
decreases the line intensities of the unbound molecules a.
As will be shown below, the bimer-monomer equilibrium
constant strongly depends on J , and therefore the inten-
sity is selectively transfered from the rotational lines to
the bimer band resulting in equation (1).
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3.1.1 Quantum corrections

Except very low temperatures, the translational motion is
classical. Neglecting the contribution from the bound tra-
jectories, one can readily take the integrals over the trans-
lational velocity components. The quantum corrections to
〈J |ρ̃a|J〉 are caused by the noncommutativity of the ro-
tational kinetic energy operator K and the anisotropic
intermolecular interaction W . Such quantum rotational
effects are the more pronounced, the higher is B: a priori,
they cannot be neglected for hydrogen halides possessing
the large rotational constants. Since the total band inten-
sity under the conditions (b–d) is conserved, the quantum
correction must be a sign-changing function of J .

For simplicity, we assume the anisotropic part of W
to be smaller than β−1 = kT. Using the definition of the
S-operator

exp(−βH) ≡ exp(−βK)S(β) exp(−βW );
H = W +K (6)

the assumption allows the expansion in powers of βW :
S =

∑
n Sn, where Sn ∼ (βW )n. Starting with S0 = 1, the

series is generated by the iterative solution of the equation
∂S/∂β = − exp(βK)W exp(−βK)S +SW which is easily
derived from equation (6). One then finds

S1(β) = βW −
∫ β

0

exp(β′K)W exp(−β′K)dβ′ (7)

〈J1m1|S1|J2m2〉 = βC(x)〈J1m1|W |J2m2〉 (8)

where x = h̄βωJ1J2 , C(x) = 1 − [exp(x) − 1]/x. The S1-
matrix is entirely off-diagonal because of C(0) = 0.

To preserve the hermiticity of exp(−βH), we write

exp(−βH) = exp(−βH/2) exp(−βH/2) =

exp(−βK/2)S(β/2) exp(−βW )S†(β/2) exp(−βK/2)
≈ exp(−βK/2) exp(−βW ) exp(−βK/2)

+ exp(−βK/2)[S1(β/2) exp(−βW )

+ exp(−βW )S†1(β/2)] exp(−βK/2). (9)

Being bath-averaged, the first term of equation (9) gives
ρa(J). The correction due to S1 is pairwise additive, and
each interaction may be treated separately. We may thus
substitute the total interaction energy by its particular
term W and multiply the final result by the number of
perturbers. Expand W and the exponent in the Legendre
polynomials PL: W =

∑
L PL(λ)WL(R); exp(−βW ) =∑

L PL(z)GL(R), where λ is the cosine of the angle be-
tween R and the unit vector na along the molecular axis.
In the first order, a straightforward calculation gives

F
(1)
q (J) = 4πnLR3

m

∑
L IL[ΦL(J)− ΦL]

ΦL(J) =
2

2J + 1
∑
J′〈J ‖ C(L) ‖ J ′〉2ϕ(βωJJ′/2)

(10)

where nL is the Loschmidt number,

ϕ(x) = 1− sh(x)/x; ΦL =
∑
J

(2J + 1)ρa(J)ΦL(J),

and 〈J ‖ C(L) ‖ J ′〉 is the reduced rotational matrix
element of the spherical harmonics C

(L)
m normalized to√

4π/(2L+ 1). The appropriate interaction length Rm
(say, equal to the Lennard-Jones diameter) is introduced
to make the radial integrals IL

IL =
βR−3

m

2L+ 1

∫
GL(R)WL(R)R2dR (11)

dimensionless. Since ϕ(0) = 0, the isotropic part of the
potential, which is diagonal in J , cannot change the in-
tensity distribution. The integrals IL were evaluated for
the M5 potential [11] of HF–Xe. Qualitatively, the quan-
tum effects due to the R − T coupling are similar to the
effective translational temperature rise occurring in the
quasiclassical Maxwellian distribution [12]. Although
the trend of ∆(q,1)

0 (J) is correct, its values are more than
2 orders less than the observed ones (Tab. 1). Such signifi-
cant disagreement can hardly be attributed to the neglect
of terms nonlinear in the interaction potential or to the
inaccuracy of the M5 model.

3.1.2 Effects of bimer formation

So far we tacitly included all rotation-translation states,
the free and bound ones, in the calculation. To derive the
nonpositive bimer correction F (b)(J), we separate the un-
bound part ρ̃(f)

a of ρ̃a = ρ̃
(b)
a + ρ̃

(f)
a

(2J + 1)−1/2〈J ‖ ρ̃(f)
a ‖ J〉 =

(2J + 1)−1
∑
M

〈JM |ρ̃a − ρ̃(b)
a |JM〉

≡ ρ0(J)[1 + F (b)(J)db]. (12)

In so doing, we shall exploit the classical dynamics for all
degrees of freedom: this makes 〈JM |ρ̃a|JM〉 indiscernible
from ρ0(J), which was used in equation (12). In the final
formulas, we shall return to discrete values of J . Classi-
cally, the ratio of two rotational matrix elements in the
rhs of equation (12) is given by

F (b)(J)db = −N
∫
B

exp(−βH)dΓ ′
/∫

T

exp(−βH)dΓ ′

(13)

where N is the total number of perturbers; dΓ ′ is the
elementary volume of the total two-particle phase space
Γ divided by the angular momentum differential dJ . The
symbol B (or T ) means that bound (or all) trajectories in
Γ ′ contribute to the relevant integral.

To explicitly express dΓ ′, we write first

dΓ = dPθadPϕadθadϕadΓTR,

where dΓTR is the translational part of the elementary
volume; Pθa = Iθ̇a and Pϕa = Iϕ̇a sin2 θa are the mo-
menta conjugate to the molecular angular variables and
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I is the molecular moment of inertia. Upon transition to
new variables J =

√
P 2
θa

+ (Pϕa/ sin θa)2, µ = Jz/J =
Pϕa/J sin θa, where Jz is the momentum projection onto
the laboratory Z-axis, one obtains∫

B

exp(−βH)dΓ ′ = J

∫ 1

−1

(1− µ2)−1/2dµ

×
∫

exp(−βH)dΩadΓTR (14)∫
T

exp(−βH)dΓ ′ = 4Jρ0(J)π2V (2πm/β)3/2

where m is the reduced mass of the colliding pair, dΩa =
sin θadθadϕa, and V stands for the gas volume.

The translational subspace ΓTR is spanned by the
translational momentum P and the intermolecular sepa-
ration R so that an exact 9D integration (Eq. (14)) meets
difficulties; the main one is to decide whether the phase
point (J, µ,na,R,P) belongs or does not to the bound
trajectory. Strong coupling between the molecular rota-
tion and the translational motion makes the whole task
very much similar to the MD simulation.

Presently, we give only a lower bound estimation of
F (b)(J) accounting for states with the negative total en-
ergy (H < 0). It neglects the contribution from the
positive-energy domain where orbiting trajectories are
possible (metastable quantum bimers). For atomic van-
der-Waals bimers [13], the orbiting states increase the
bimer/monomer equilibrium constant by 20–40% that
roughly estimates from the above the accuracy of our
calculation. Expectedly, the accuracy achieved is some-
what higher since orbiting is partially destroyed by RT -
coupling. The latter is tacitly implied to be sufficiently
strong. Were it not, the bimer intensity would be dis-
tributed over the whole band, and it would be difficult
to separate it from the monomer intensity.

In the negative-energy domain, one can integrate over
µ and three spherical angles of R and na to obtain
F (b)(J) = −4πnLR3

mf(εJ), where the dimensionless func-
tion f(εJ)

f(εJ) = π−1/2

∫∫
S

γ(3/2,−(εJ + βW ))

× exp(−βW )ρ2
mdρmdλ (15)

depends on εJ = BJ(J + 1)/kT rather than on J ; γ(n, x)
is the incomplete gamma function, ρm = R/Rm. The in-
tegration area S is confined by εJ + βW ≤ 0.

The higher is the rotational energy, the less probable
is the bimer formation; moreover, the function F (b)(J)
vanishes at the threshold value Jmax. Based on the M5
potential of HF–Xe [11], we found Jmax = 4. The func-
tion −F (b)(J) may be interpreted as the J-dependent
constant of equilibrium between the free and bound ac-
tive molecules; the population-weighted summation of
−nF (b)(J) over J thus gives the total fraction of the
bound HF molecules. Moreover, if one assumes the dipole
moment of bimer to coincide with that of free molecule

and disregards the vibrational effects, the band intensity
Avv′ becomes not subjected to the buffer-gas pressure:
Avv′ = A

(f)
vv′ +A

(b)
vv′ = constant.

The calculated ∆(b)
0 (m) coefficients for HF–Xe are col-

lected in Table 1. Apart of the J-threshold presence, the
bimer contribution to ∆0 rapidly grows with decreas-
ing temperature (Tab. 1). The calculation reproduces the
rapid decrease of ∆(b)

0 (m) at the rotational excitation,
but the absolute values are approximately 6 times smaller
than the measured ones. Moreover, similar calculations
for HCl–Xe and HCl–Ar based on Hutson’s potential [5]
appeared to be in the same disbalance with the experi-
ment [2]. Since the potentials used are known to describe
well the rigid-rotator interactions with atoms [5], we are to
conclude that there exist other mechanisms contributing
to the density effects.

3.1.3 Line interference contributions

So far, we neglected the line mixing effect caused by the
nonsecular part of the rotational relaxation matrix Γ (ω).
To obtain the corrected spectrum function Sm(ω) of the
mth line centered at ωm, one should treat the off-diagonal
Γ -matrix elements as a perturbation [14]. Along with the
conventional Rosenkranz asymmetry term [14] (which has
no effect on the integrated line intensity), we derived a
new correction

∆
(nd)
0 (m) = −

∑
m′ 6=m

[Γ ′mm′(ωm) + Γ ′m′m(ωm′)]

×Am′/Am(ωm − ωm′) (16)

that appears due to the allowance for the imaginary terms
Γ ′mm′ of Γ neglected by Rosenkranz [14].

This mechanism conserves the total band intensity, i.e.∑
m∆Am =

∑
m∆

(nd)
0 (m)A2

m = 0 since the antisymmet-
ric function of m and m′ is summed. To the best of our
knowledge, no model has been so far developed for the
imaginary part of the rotational Γ -matrix. For a rough
estimation, assuming Γ ′mm′ in equation (16) to be of con-
stant sign, one can apply the sum rules [15] to obtain
|∆(nd)

0 (m)| < |Γ ′mm(ωm)|/B. The measured rotational
shift coefficients are typically 10−3 cm−1 Amagat−1 [16];
therefore, the line interference effect in the HF spectra is
∼10−4 Amagat−1 and cannot noticeably change the line
intensities.

3.2 Influence of vibration

The inclusion of vibration may become important. At first
sight, this should not be the case: Hutson’s data [5] show
the expectation values of the potential parameters to vary
by about 1% or less on the vibrational excitation. Note,
however, that these variations are quadratic in the small
parameter χ =

√
2B/h̄ω0 (χHF = 0.10) whereas the non-

secular vibrational terms of potential (and of the density
matrix) are linear in χ.
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In the impact theory, the interband correlation is
caused by the nonorthogonality of the vibrational line-
space vectors. (Within each band, nevertheless, the line-
space orthogonality is preserved since the reduced den-
sity matrix remains isotropic and, consequently, diagonal.)
The generalization of the line-space metric that incorpo-
rates the vibrational effects without violation of the ro-
tational detailed balance is not trivial and shall not be
discussed here. We just demonstrate that the vibrational
intensity transfer is possible.

Consider the short-range part of the isotropic poten-
tial term W0(R) derived, say, from the atom-atom scheme.
Due to the large mass difference, the heavier atom is
placed practically at the center-of-mass whereas the H
atom is shifted by r from it (r � R). Assuming the re-
pulsion to be exponential with the core radius α−1and
averaging over the orientations, one then obtains

W0(R, x) ≈W0(R, 0) exp(αr0x)

where x = r/r0 − 1 is the dimensionless vibrational dis-
placement and r0 stands for the equilibrium H–F distance.
The above expression was derived having regard that for
the systems considered αr0 ≈ 3–4 holds [5,11]. It means
that the repulsion interaction is strongly modulated by
the H–F stretching. For the relevant matrix element, one
has 〈v| exp(αr0x)|v+∆v〉 ∼ (αr0χ)|∆v|, where the dimen-
sionless parameter αr0χ is comparable to unity. An order-
of-magnitude estimation of the intensity transfer to the
weaker 0→ v+1 band (v ≥ 0) from the 0→ v one results
in the density coefficient Fv,v+1 ∼ 4πR3

mnL(αr0kT/h̄ω0)
falling in the range 10−3/Amagat. Therefore, the vibra-
tional effects deserve a further theoretical study. We com-
ment also, that the above estimation accounts neither for
the anisotropic repulsion (which is vibration-dependent at
the same extent), nor for the influence of the potential
well; their allowance may considerably change the value
of Fv,v+1.

The presence of the large-amplitude mode is seemingly
essential for the intensity transfer: otherwise, the vibra-
tional modulation of the interaction is weak. The Raman
data on the vibrational intensity change per molecule
at the gas-liquid transition collected by Schrötter and
Klöckner [17] confirm this supposition: only the H(D)–
X stretching bands in the halogenated methanes are en-
hanced by the density. It should also be noted that the role
of the bound states in the vibrational intensity transfer
can differ from that in the rigid rotator case. In particular,
the ratio of the bimer/monomer intensities in the vibra-
tional bands may not be given by the relevant equilibrium
constant. Data on the pure rotational spectra (e.g., the
Raman ones) would be decisive to check the above hy-
pothesis: the interband effect is expectedly negligible for
them, with the density coefficients falling into the range
of 10−3/Amagat (Tab. 1).

3.3 Polarization effects

In this section we briefly examine the electrooptical effects
that may alter the transition amplitudes (see Eq. (2)) due

to the influence of medium. The effects may originate from
variations of the electric-dipole coupling with the incident
em field (the local-field effect) and from variations of the
dipole moment itself (the reaction-field effect). However,
the known local-field correction ∆(lf) [18] is J-independent

∆(lf) = 8πnLαb/3 (17)

(αb is the polarizability of the buffer particles) and ap-
pears to be of the incorrect sign and magnitude (1–2 deci-
mal orders smaller than the experimental values). For the
leading (isotropic) second-order reaction-field correction
∆(rf,2), one has∆(rf,2) ∼ ∆(lf)αa/R

3
m showing it to be neg-

ligible since αa is 1–2 orders smaller than R3
m. In accord

with this estimation, the reaction-field approach to the
band intensity variations caused by the gas-liquid tran-
sition (for the same mixtures as those considered here)
resulted in the intractable values of the Onsager radius,
two times smaller than the interaction diameter.

In contrast to ∆(lf) and ∆(rf,2), the first-order reaction-
field correction ∆(rf,1) may be, in principle, J-dependent,
and we calculate it for a more complete picture. This cor-
rection is due to the dipole moment µ = αbE induced on
the atom b by the electric dipole field E(MIF) of the par-
ticle a. The intensity variation is due to the in-phase part
of µIF and is proportional to the mean scalar product dou-
bled 2〈(MIF, µFI)〉. The latter is nonzero only when the
interaction potential W is anisotropic. Assuming the ro-
totranslational motion to be semiclassical, we derived the
expression

∆
(rf,1)
∆v = −16πnLαb

25

∫ ∞
0

G2(R)R−1dR (18)

which, in fact, appeared to be J-independent. The ra-
dial integration performed with the M5 potential of HF–
Xe [11] gives ∆(rf,1)

∆v /∆(lf) = 0.02. Thus the reaction-field
contributions are too weak to explain the observations.

There is also an additional collision-induced absorp-
tion entirely due to µIF. Because of strong translational
modulation, its lines are broad (about 30 cm−1) and form
a hardly detectable background. Moreover, the collision-
induced correction as compared to ∆(lf) contains an ad-
ditional small factor αb/R

3
m (≈ 0.08 for HF–Xe) and is

thus quite negligible. Previous calculations of this effect
for HCl [2] led to similar results.

4 Conclusions

This study presents new data on the yet poorly studied
selective line-intensity changes by buffer-gas pressure. The
theoretical analysis undertaken was stimulated by appar-
ent inconsistencies of the previously exploited static ap-
proach that accented only on the perturbations of the
transition amplitudes. We found also that neither the
in-phase polarization of buffer particles by the molecu-
lar dipole moment, nor the local-field effect can explain
the observed J-dependent intensity variations. The magni-
tudes of these effects appear to be quite small; same holds
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either for the quantum rotational corrections due to non-
commutativity of the angular momentum with the interac-
tion potential, or for rotational line mixing. In fact, only
the bimer effect presently estimated for rigid molecules
gives a correct order of the line intensity variations on den-
sity. For vibrating molecules, this effect can be enhanced
by the interband intensity transfer due to the pronounced
modulation of the interaction energy by the light-atom vi-
bration. To appreciate the relative roles of the rotational
and vibrational contributions, new IR and Raman mea-
surements are desirable at different temperatures. This
could provide new data on the vibration-dependent inter-
action surfaces and allow us to penetrate better into the
nature of the intensity variations in more dense media.
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